Skip to main content

Recognizing the causes of rolling element bearing failures

Assuming proper design, application, and lubrication, rolling element bearings will fail sooner or later due to their natural material fatigue life limit, but all bearings will fail prematurely from abuse or neglect.

BY L. (TEX) LEUGNER

Troubleshooting of rolling element bearing problems and recognizing their root cause of failure is often difficult, because many failure types look very similar. This is because bearing failures are almost always precipitated by spalling or flaking conditions of the bearing component surfaces. Spalling occurs when a bearing has reached its fatigue life limit, but also when premature failures occur. For this reason, it is important for the troubleshooter to be aware of and able to recognize all the common failures of rolling element bearings. This ability to correctly troubleshoot and recognize the root cause of bearing failures will lead the analyst to the right conclusions. We often hear the comment, even by knowledgeable and well-meaning engineers and technicians, “this bearing failed prematurely because it was defective.” Manufacturing defects in rolling element bearings make up less than one percent of the millions of bearings in use today around the world and this small defect percentage is being reduced continually by improvements in manufacturing techniques and bearing materials. Only a small fraction of all the bearings in use fail because they have reached their material fatigue limit. Most bearings outlive the machinery or component in which they are installed.

Q| Does the maintenance group understand what constitutes bearing fatigue life limits?

LOGIC: rolling element bearing life expectancy is directly related to the number of revolutions performed by the bearing, the magnitude of the load and the lubrication and cleanliness of the lubricant; assuming correct initial bearing selection and proper installation. Fatigue is the result of shear stresses, referred to as elastic deformation, cyclically appearing immediately below the load-carrying surface, as the rollers or balls pass over the raceway.

After many revolutions, these stresses between the rolling element and raceway surfaces will cause subsurface cracks to appear that will gradually extend to the surface of the rolling element, raceway, or both. These cracks may cause surface fragments of bearing material to break away. This condition is referred to as flaking or spalling that continues until the bearing has reached its life limit as illustrated below.


Q| Can the failure investigator explain the cause of the bearing failure illustrated below?

LOGIC: the frosted or smeared appearance of this bearing race illustrates what happens when the oil viscosity is too low (thin), and metal-to-metal contact occurs. This type of premature failure often occurs during initial start-up of heavily loaded bearings. This damage occurred after only 15 seconds of operation.

Q| Can the failure investigator recognize and explain the cause of the bearing failure illustrated below?

LOGIC: this bearing has failed due to continual welding contact between asperities on the metal surfaces, eventually causing metal to be ‘pulled out’ as the surfaces adhered to each other during rotation. This condition may have been caused by oil of the wrong viscosity, excessive load, speed, temperature, incorrect internal clearances, trapped contaminants or a combination of these conditions.

Even an increase of as little as 4° or 5° in temperature may contribute to these failures, due to unacceptable thinning of the lubricant’s viscosity. When analyzing the root cause of a failure, all the possible contributing causes must be considered.

Q| Can the failure analyst recognize and explain the cause of the two bearing failures illustrated below?

LOGIC: the rusting and white colouration on the outer race of the first bearing show a combination of several possible conditions; including small vibrations causing oscillation of the outer race, reddish discolouration of moisture in the bearing caused by poor sealing, poor fits between the outer raceway and housing, lack of lubrication or improper installation. The second bearing shows serious dark corrosion on the inner raceway equidistant between the rolling elements that occurred while the bearing was stationary.

Q| Can the failure analyst recognize and describe the bearing failure illustrated below?

LOGIC: over lubrication is frequently the cause of grease lubricated bearing failure causing higher than normal bearing operating temperatures. Excessive grease quantities cause internal friction within the lubricant, which in turn promotes excessive temperatures causing oxidation and premature lubricant and bearing failure.

Excessive quantities of grease cause a churning action within the rotating components and the result will always be an increase in temperature. Oil of too high viscosity or grease with a too high consistency will also increase operating temperatures. Care must be taken when investigating high temperatures, that the troubleshooter must consider not only the possibility of excessive lubricant, but that the correct lubricant for the application is in use.

Q| Can the failure analyst explain the cause of the bearing failure illustrated below?

LOGIC: bearings are not safe from potential electrostatic discharge or stray currents generated by electromagnetic forces. In these bearing applications, it is recommended that the bearing be grounded using grounding brushes.

For users of fan and electric motor belts and conveyors, the industry standards that define minimum conductivity are RMA IP-3-3, ISO 1813, and ISO 9563. In addition, drive belt manufacturers recommend the use of static conductive belts of six megohms or less. This bearing’s inner ring shows clear evidence of corrugated surface damage caused by electric pitting.

The challenge for troubleshooters is to learn to recognize the difference between the tiny percent of bearings that display material fatigue spalling that confirms their end of life and most bearings that display premature failures described above, because in many instances they look like the untrained eye.

It should come as no surprise to experienced equipment troubleshooters that assuming proper design, application, and lubrication, rolling element bearings will fail sooner or later due to their natural material fatigue life limit, but all bearings will fail prematurely from abuse or neglect.

L. (Tex) Leugner, author of Practical Handbook of Machinery Lubrication, is a 15-year veteran of the Royal Canadian Electrical Mechanical Engineers, where he served as a technical specialist. He was the founder and operations manager of Maintenance Technology International Inc. for 30 years. Tex holds an STLE lubricant specialist certification and is a millwright and heavy-duty mechanic. He can be reached at texleug@shaw.ca.

MROMAGAZINE

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

27 steps of the Gearbox Repair and rebuilding

 27 steps of the Gearbox Repair and rebuilding: Step 1 Cleaning exterior of Gearbox and identification. Step 2 Remove all bolts from the gearbox. Step 3 Disassembly for Gearbox preliminary evaluation of the condition and repair required Step 4 Mag inspect Gearbox. Step 5 check all Gears. Step 6 Customer communication of health of the Gearbox. Step 7 Parts to be repaired or, reverse engineered parts where needed required for Gearbox rebuild. Step 8 Failure analysis during complete disassembly and evaluation of the component wear and damage. Step 9 Cleaning all internal components and housing. Step 10 Check all bearings diameters in house. Step 11 Check all shafts Step 12 inspect all Gears. Step 13 Set up check line bore of the gearbox. Step 14 Repair and rebuild Gears back to O.E.M Step 15 Replacing all bearings seals and gaskets Step 16 Repair and rebuild all shafts again to O.E.M Step 17 Realigning all gears shafts and bearings back to O.E.M Step

Thermal growth: how to identify, quantify and deal with its effects on turbomachinery

Thermal growth, as used in the field of machinery alignment, is machine frame expansion resulting from heat generation. The generation of heat, of course, is caused by operational processes and forces. Materials subjected to temperature changes from heat generation will expand by precise amounts defined by their material properties. In turbomachinery, thermal growth results from the temperature differences occurring between the at-rest and running conditions. Generally speaking, the greater the temperature difference, the greater the thermal growth. The magnitude of the growth can be calculated from three variables: ∆ T (temperature difference) C   (coefficient of thermal expansion) L    (distance between shaft centerline and machine supports) When machinery begins to generate heat, the temperature difference between at-rest and running conditions will cause thermal expansion of the machine frame, thereby bringing about the movement of the shaft centerlines. This can produce changes in

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb