Skip to main content


In-line inspection (ILI) of pipelines has established itself as the most efficient tool for evaluating the condition of a pipeline and an indispensable part of pipeline integrity management. Historically, there have been two major technologies used in in-line inspection for corrosion, the magnetic flux leakage (MFL) and ultrasonics (UT), each having their distinct properties and fields of application. 

Ultrasonic (UT) ILI has always provided unique quality of information about the pipelines, rendering highest accuracy and tightest measurement tolerances. In the 1990s ultrasonic tools for detection of cracks have become available.

Ultrasonic measurement principle: ultrasonic transducer slides along the internal surface of the pipe wall measuring distance to the wall and the wall thickness (top), yielding the stand-off and the wall thickness (bottom two B-scans)

Ultrasonic (UT) based In Line Inspection tools for all types of liquid filled pipelines.

This includes Ultrasonic MultiChannel ILI’s (UT-MC) for high speed long length pipeline corrosion (metal loss) inspection.

Ultrasonic Rotary ILI’s (UT-R) for super high resolution in short to medium length pipelines (<30km) for corrosion (metal loss) inspection. Recommended for old and/or severely corroded pipelines to provide a higher level of detail and accuracy in corroded areas.

Ultrasonic Crack Detection and Sizing ILI’s (CS) for detecting and measurements of axial (ERW) and circumferential cracks larger than 1.0 mm. The Ultrasonic ILI’s require a liquid in the pipeline in order to operate (diesel, crude, water, Naphtha, etc.) and offer direct and accurate measurements in mm/thousand of an inch, as opposed to volumetric measurements in % of other types of ILI’s, thereby offering greater detail and accuracy.

All Ultrasonic ILI’s are tested and proven in full scale test loops and infinity loops to ensure performance as a minimum comply with the POF-2016 standard ( POF specifications for In-line Inspection of Pipelines).

UT Intelligent Pigs can be used to inspect any diameter of pipelines, with any thickness and of virtually any type of material, such as:

  • Carbon Steel
  • Austenitic Steel
  • High-Density Polyethylene (HDPE)
  • HDPE or PE Lined
  • GRE/GRP pipelines
  • Subsea or Above Ground
  • Bare, Coated or Insulated
  • Cladded or lined pipelines

Read more: Ultrasonic In-Line Inspection ofPipelines, New Generation of Tools (Pdf)



Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

27 steps of the Gearbox Repair and rebuilding

 27 steps of the Gearbox Repair and rebuilding: Step 1 Cleaning exterior of Gearbox and identification. Step 2 Remove all bolts from the gearbox. Step 3 Disassembly for Gearbox preliminary evaluation of the condition and repair required Step 4 Mag inspect Gearbox. Step 5 check all Gears. Step 6 Customer communication of health of the Gearbox. Step 7 Parts to be repaired or, reverse engineered parts where needed required for Gearbox rebuild. Step 8 Failure analysis during complete disassembly and evaluation of the component wear and damage. Step 9 Cleaning all internal components and housing. Step 10 Check all bearings diameters in house. Step 11 Check all shafts Step 12 inspect all Gears. Step 13 Set up check line bore of the gearbox. Step 14 Repair and rebuild Gears back to O.E.M Step 15 Replacing all bearings seals and gaskets Step 16 Repair and rebuild all shafts again to O.E.M Step 17 Realigning all gears shafts and bearings back to O.E.M Step

Thermal growth: how to identify, quantify and deal with its effects on turbomachinery

Thermal growth, as used in the field of machinery alignment, is machine frame expansion resulting from heat generation. The generation of heat, of course, is caused by operational processes and forces. Materials subjected to temperature changes from heat generation will expand by precise amounts defined by their material properties. In turbomachinery, thermal growth results from the temperature differences occurring between the at-rest and running conditions. Generally speaking, the greater the temperature difference, the greater the thermal growth. The magnitude of the growth can be calculated from three variables: ∆ T (temperature difference) C   (coefficient of thermal expansion) L    (distance between shaft centerline and machine supports) When machinery begins to generate heat, the temperature difference between at-rest and running conditions will cause thermal expansion of the machine frame, thereby bringing about the movement of the shaft centerlines. This can produce changes in

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb