Skip to main content

Troubleshooting Pipeline Steam Condensate

One day an engineering lecturer at school discussed an accident at a nuclear power station. Seawater had entered the cooling pipes of the reactor. He asked the students what would happen in such a situation.

A Dean’s Honor-List student answered that neutron flux from the reactor would irradiate the sodium ions in the seawater salt molecules to create a short-lived isotope of sodium. This isotope would emit low-intensity alpha radiation which lodges in the interstices of the ferrous lattices of the steel alloys of the pipes, creating hot spots or fractures, leading to escape of radioactive seawater to the river.

No, the lecturer replied, the pipes will rust.

In troubleshooting, then, it is best to frst suspect the obvious. Why make things more complicated than they really are? Recognizing that there is an overflowing sink and turning off the water, for example, can save a lot of time that might otherwise be spent trying to mop up the floor. To troubleshoot problems, it is necessary to be aware of the various factors that may have a direct influence the situation.

Here is an example: Condensate samples were taken of steam that was being taken from six once through steam generators (OTSGs) and two heat recovery steam generators (HRSGs) to several dozen well pads each with dozens of individual well pads. Each HRSG turbomachine produced 90 MW so a combined 180 MW with some extra headroom reaching 202 MW for peak loading. The HRSGs of oil producing steam assisted gravity drainage (SAG-D) sites make high-temperature, high-pressure steam. But only high-temperature, lowpressure steam is needed to be injected into the ground to liquefy bitumen for extraction, so it ma kes financial sense to run the steam through turbogenerators.

Steam condensate samples showing different colors from week to week and well pad to well pad.

Above ground pipelines carry steam to the pads and above ground pipelines carry the produced bitumen back to the plant. The bitumen is then treated to separate the oil from the water, gasses, and steam. The steam in a SAGD site is injected into the ground; heat and pressures change the viscosity of the heavy oil that is trapped in the sand and it flows downward by gravity to collection pipes and is pumped out. The gasses are collected and burned in the steam generators to create heat to vaporize the recycled water from the wells and reuse it.

When samples of steam condensate samples were collected from the steam being injected into the ground, the high-temperature, low-pressure steam was run through water cooled coils. The samples were analyzed for pH, residual a mines and conductivity and the samples were also run through an Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OAS) for elemental analysis. Samples are burned in a plasma flame that is 2,000°F hotter than the surface of the sun.

The color of steam condensate samples collected varied depending on the well pad, as well as varying from one week to another. Many different tests were run in an attempt to find a statistical correlation between the changing shades. A volatile acid test was done, based on esterification of the carboxylic acids present. All volatile organic acids present are reported as their equivalent mg/L acetic acid. This led to the discovery that the darker the steam condensate, the higher the presence of carboxylic acids (an indication of potential corrosion). 

This results from this test can be statistically compared to steam generation parameters such as steam qualities, temperature,pressures, carryover, and amine additions for the set points of the steam engines.

This investigation led to further discoveries. This included the causes of scale taken from samples gathered from boiler pigging operations. X-ray diffraction (XRD) analysis done by an electron microscope scan of scale in an HRSG stream fnal pass going to a turbogenerator. Different kinds of scale have varying effects on heat transfer and metal expansion coefcients, as well as vibration

Author:
BY OREST PROTCH
Orest Protch, retired in 2020, has operated and helped commission many types of process plants including in municipal, industrial and at remote oil camps. He now does freelance writing. For more information, oprotch@gmail.com

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

27 steps of the Gearbox Repair and rebuilding

 27 steps of the Gearbox Repair and rebuilding: Step 1 Cleaning exterior of Gearbox and identification. Step 2 Remove all bolts from the gearbox. Step 3 Disassembly for Gearbox preliminary evaluation of the condition and repair required Step 4 Mag inspect Gearbox. Step 5 check all Gears. Step 6 Customer communication of health of the Gearbox. Step 7 Parts to be repaired or, reverse engineered parts where needed required for Gearbox rebuild. Step 8 Failure analysis during complete disassembly and evaluation of the component wear and damage. Step 9 Cleaning all internal components and housing. Step 10 Check all bearings diameters in house. Step 11 Check all shafts Step 12 inspect all Gears. Step 13 Set up check line bore of the gearbox. Step 14 Repair and rebuild Gears back to O.E.M Step 15 Replacing all bearings seals and gaskets Step 16 Repair and rebuild all shafts again to O.E.M Step 17 Realigning all gears shafts and bearings back to O.E.M Step

Thermal growth: how to identify, quantify and deal with its effects on turbomachinery

Thermal growth, as used in the field of machinery alignment, is machine frame expansion resulting from heat generation. The generation of heat, of course, is caused by operational processes and forces. Materials subjected to temperature changes from heat generation will expand by precise amounts defined by their material properties. In turbomachinery, thermal growth results from the temperature differences occurring between the at-rest and running conditions. Generally speaking, the greater the temperature difference, the greater the thermal growth. The magnitude of the growth can be calculated from three variables: ∆ T (temperature difference) C   (coefficient of thermal expansion) L    (distance between shaft centerline and machine supports) When machinery begins to generate heat, the temperature difference between at-rest and running conditions will cause thermal expansion of the machine frame, thereby bringing about the movement of the shaft centerlines. This can produce changes in

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb