Skip to main content

How to clean superalloy parts? brazing technique removes oxides in deep, narrow cracks

Investment cast parts used in modern gas turbines are made of expensive superalloys that can withstand extreme thermal, mechanical and chemical loads experienced by hot gas path components. Parts with hundreds of thousands of service hours, however, become severely oxidized.

To improve efficiency and reduce the risk of unscheduled outages, these parts must either be periodically refurbished using a brazing repair process or replaced. To facilitate brazing repair, all oxidation, sulfidation and hot corrosion must be removed from surfaces, cooling passages and deep, narrow cracks.
Oxide scale typically forms on the mating faces of cracks that occur in hot gas path areas. These cracks become packed full of scale. It is the goal of the service shop to repair these components by filling the cracks with a braze alloy.
Unfortunately, braze alloy cannot flow into cracks filled with oxide scale.

Figure 1: By varying the pressure between positive, negative, and atmospheric levels, the Dynamic FIC system “pulses” HF in and out of cooling channels, deep cracks and small holes to more effectively clean oxidized hard-to-reach areas.

To complicate matters, nickel- (Ni) and cobalt-based (Co) superalloys usually contain aluminum (Al) and titanium (Ti) to improve strength. The presence of these elements causes the resulting scale to contain complex crystalline structures that are difficult to remove.
“At the narrow tip of a crack, scale forms during service, which occupies a larger volume than the metal from which it formed,” said Donald Bell, Chief Engineer at a gas turbine repair facility. “You cannot fill the crack with braze alloy if it is already filled with oxide scale.”
Traditionally, fluoride ion cleaning is performed at atmospheric pressure to remove oxidants. However, metallurgical studies have shown that it only works well when cleaning wide cracks.
What is known as Dynamic Fluoride Ion Cleaning (DFIC), on the other hand, has the ability to clean narrower cracks by cycling between negative, atmospheric, and positive pressure in preparation for brazing.
The DFIC process, also known as Hydrogen Fluoride (HF) Ion Cleaning, results from the reaction of fluorine with various oxides. HF gas can be toxic if it escapes into the atmosphere. However, improvements in gas monitoring sensors and digital electronics have made it safe for parts cleaning.
At temperatures greater than 1,750°F, the fluoride ion reacts with oxides that have formed on the crack faces, converting them to gaseous metal fluorides. This allows them to depart through the off-gas stream of the reactor.
There were, however, drawbacks to fluoride ion cleaning processes developed in the 1970s, which utilized fluoride compounds in powdered form and operated at normal atmospheric pressure. Besides having difficulty penetrating cracks, the early processes relied on a single charge of powder to produce HF gas.
“When compounds in powdered form, such as chromium-fluoride, aluminum-fluoride, or polytetrafluoroethylene are used, the cleaning process often has to be repeated,” said Bell.
With DFIC, reaction temperature, fluorine concentration, pressure level and duration are independently controlled variables. The control system can be programmed to clean specific alloy types,various widths of cracks, levels of scale and oxidation.
During cleaning, HF and H2 gas are gradually introduced. A typical cleaning cycle may begin as 94% to 96% hydrogen, but may be changed to an 82:18 Hto HF ratio depending on the substrate material. Some systems can clean at sub-atmospheric pressures from 100 to 650 Torr while remaining at processing temperature. By varying pressure between positive, negative and atmospheric levels, the system pulses HF in and out of cooling channels, cracks and small holes (Figure).
“We use DFIC equipment to modulate pressure from low to high, to pneumatically push the fluoride ions down into the tips of the cracks and hold them there for a while,” said Bell. “By performing the process under vacuum, aluminum and titanium are depleted from the substrate, creating a denuded zone approximately 0.0005” deep.”
This provides a buffer as residual oxygen in the vacuum chamber that can re-oxidize a clean part during furnace brazing. The denuded zone allows enough time to get the braze filler to flow and wick into the cracks before reoxidation occurs.
Cobalt-based alloys can react with fluorine to create a chromium fluoride film. Chromium fluoride is the most refractory (temperature resistant) compound of all the metal fluorides. As a result, it does not volatize at the usual temperatures used in DFIC.
Without the presence of a vacuum, the part must be moved to a vacuum furnace to be subjected to higher tempera ture and lower pressure required until the chromium fluoride volatilizes. However, the resulting fluorides can contaminate the brazing furnace or the vacuum pump. According to Bell, at pressures of about 150 Torr absolute, chromium fluoride will remain gaseous, so cleaning can be done without depositing a residue on the joint.
In addition, this dual vacuum process uses less HF because oxides are volatilized at a lower temperature and concentration of HF when performed sub-atmospherically. This cuts the risk of inter granular attack (IGA), which could otherwise chemically alter the microstructure of the metal being cleaned.

Rob Kornfeld is President of Hi-Tech Furnace Systems, Inc. of Shelby Township, MI, a provider of Dynamic Fluoride Ion Cleaning, Chemical Vapor Deposition and Vapor Phase Coating systems. For more information, visit


Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

27 steps of the Gearbox Repair and rebuilding

 27 steps of the Gearbox Repair and rebuilding: Step 1 Cleaning exterior of Gearbox and identification. Step 2 Remove all bolts from the gearbox. Step 3 Disassembly for Gearbox preliminary evaluation of the condition and repair required Step 4 Mag inspect Gearbox. Step 5 check all Gears. Step 6 Customer communication of health of the Gearbox. Step 7 Parts to be repaired or, reverse engineered parts where needed required for Gearbox rebuild. Step 8 Failure analysis during complete disassembly and evaluation of the component wear and damage. Step 9 Cleaning all internal components and housing. Step 10 Check all bearings diameters in house. Step 11 Check all shafts Step 12 inspect all Gears. Step 13 Set up check line bore of the gearbox. Step 14 Repair and rebuild Gears back to O.E.M Step 15 Replacing all bearings seals and gaskets Step 16 Repair and rebuild all shafts again to O.E.M Step 17 Realigning all gears shafts and bearings back to O.E.M Step

Thermal growth: how to identify, quantify and deal with its effects on turbomachinery

Thermal growth, as used in the field of machinery alignment, is machine frame expansion resulting from heat generation. The generation of heat, of course, is caused by operational processes and forces. Materials subjected to temperature changes from heat generation will expand by precise amounts defined by their material properties. In turbomachinery, thermal growth results from the temperature differences occurring between the at-rest and running conditions. Generally speaking, the greater the temperature difference, the greater the thermal growth. The magnitude of the growth can be calculated from three variables: ∆ T (temperature difference) C   (coefficient of thermal expansion) L    (distance between shaft centerline and machine supports) When machinery begins to generate heat, the temperature difference between at-rest and running conditions will cause thermal expansion of the machine frame, thereby bringing about the movement of the shaft centerlines. This can produce changes in

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb