Skip to main content

Grounding brush discharge monitoring

In recognition of the possibility of static charge build up in condensing steam turbines, API 612 (2005) specifies that grounding brushes be installed. The electrical flow to ground through these brushes  be monitored and useful information can be extracted.

This article carries excerpts from the paper, “Babbitted bearing health assessment” by John K Whalen of John Crane, Thomas D Hess of Chestnut Run, Jim Allen of Nova Chemicals and Jack Craighton of Schneider Electric.



Grounding brushes take current from the rotor to ground so that a charge does not build up on the rotor to the point where it discharges to ground though the best path possible – which is usually the closest point between the rotor and stator which is usually (hopefully) the point of minimum film thickness in a bearing. Typically this point of minimum film thickness is found in the active thrust bearing (as will be shown later). Shaft grounding brushes serve two purposes. The brushes are able to transmit modest amounts of stray current to ground for prevention of arc damage through parts of the machine (especially the bearings). The brushes also permit measurement of the shaft voltage and current, which allows assessment of the electromagnetic condition of the machine.

There are two types of electrical currents in rotating machines: electrostatic and electromagnetic. Electrostatic currents are primarily generated by impinging particles or droplet atomization (such as in wet stages of steam turbines) and can generally be handled with one grounding brush per shaft. Electrostatic currents usually cause minor damage, such as frosting of bearing babbitt, and the progress of damage is relatively slow. Electromagnetic currents are usually due to residual magnetism and/or stray currents created by electrical machines, such as generators, motors, and exciters. Events such as machinery rubs, improper welding, or lightning strikes can induce residual magnetism in the machine parts and cause the rotating machine to become a generator.

Electromagnetic currents can be extremely destructive. Severe damage can occur rapidly because of high current density. Damage such as burned areas and welding of components are possible. Monitoring to determine shaft current level and changes is performed using a shaft voltage current monitor (VCM). The VCM measures voltage and current through the grounding brushes. Ideally, the output of the VCM should be connected to a recording device or plant data historian so that trends of the voltage and current can be used to detect changes in shaft electrical properties.

If readings increase slowly, it could be an indication of deterioration of the electrical machinery (motor, generator, or exciter) or possible progressive self-magnetization of the machine. Sudden increases in current may indicate that self-magnetization has occurred, possibly due to the reasons previously mentioned.

If readings from the VCM decrease to zero, the grounding brush has most likely lost contact due to wear, or some other part of the brush circuit has opened. More detailed analysis of the shaft currents to determine cause of excessive shaft currents can be performed using an oscilloscope.

Source: https://www.turbomachinerymag.com/view/grounding-brush-discharge-monitoring

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

27 steps of the Gearbox Repair and rebuilding

 27 steps of the Gearbox Repair and rebuilding: Step 1 Cleaning exterior of Gearbox and identification. Step 2 Remove all bolts from the gearbox. Step 3 Disassembly for Gearbox preliminary evaluation of the condition and repair required Step 4 Mag inspect Gearbox. Step 5 check all Gears. Step 6 Customer communication of health of the Gearbox. Step 7 Parts to be repaired or, reverse engineered parts where needed required for Gearbox rebuild. Step 8 Failure analysis during complete disassembly and evaluation of the component wear and damage. Step 9 Cleaning all internal components and housing. Step 10 Check all bearings diameters in house. Step 11 Check all shafts Step 12 inspect all Gears. Step 13 Set up check line bore of the gearbox. Step 14 Repair and rebuild Gears back to O.E.M Step 15 Replacing all bearings seals and gaskets Step 16 Repair and rebuild all shafts again to O.E.M Step 17 Realigning all gears shafts and bearings back to O.E.M Step

Thermal growth: how to identify, quantify and deal with its effects on turbomachinery

Thermal growth, as used in the field of machinery alignment, is machine frame expansion resulting from heat generation. The generation of heat, of course, is caused by operational processes and forces. Materials subjected to temperature changes from heat generation will expand by precise amounts defined by their material properties. In turbomachinery, thermal growth results from the temperature differences occurring between the at-rest and running conditions. Generally speaking, the greater the temperature difference, the greater the thermal growth. The magnitude of the growth can be calculated from three variables: ∆ T (temperature difference) C   (coefficient of thermal expansion) L    (distance between shaft centerline and machine supports) When machinery begins to generate heat, the temperature difference between at-rest and running conditions will cause thermal expansion of the machine frame, thereby bringing about the movement of the shaft centerlines. This can produce changes in

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb