Skip to main content

Three Generations of World Maintenance

Since the 1930's, the evolution of maintenance can be traced through three generations. RCM is rapidly becoming a cornerstone of the Third Generation, but this generation can only be viewed in perspective in the light of the First and Second Generations.

The First Generation
The First Generation covers the period up to World War II. In those days industry was not very highly mechanized, so downtime did not matter much. This meant that the prevention of equipment failure was not a very high priority in the minds of most managers. At the same time, most equipment was simple and much of it was over-designed. This made it reliable and easy to repair. As a result, there was no need for systematic maintenance of any sort beyond simple cleaning, servicing and lubrication routines. The need for skills was also lower than it is today.
The Second Generation

Things changed dramatically during World War II. Wartime pressures increased the demand for goods of all kinds while the supply of industrial manpower dropped sharply. This led to increased mechanization. By the 1950's machines of all types were more numerous and more complex. Industry was beginning to depend on them.

As this dependence grew, downtime came into sharper focus. This led to the idea that equipment failures could and should be prevented, which led in turn to the concept of preventive maintenance. In the 1960's, this consisted mainly of equipment overhauls done at fixed intervals.

The cost of maintenance also started to rise sharply relative to other operating costs. This led to the growth of maintenance planning and control systems. These have helped greatly to bring maintenance under control, and are now an established part of the practice of maintenance.

Finally, the amount of capital tied up in fixed assets together with a sharp increase in the cost of that capital led people to start seeking ways in which they could maximize the life of the assets.

The Third Generation

Since the mid-seventies, the process of change in industry has gathered even greater momentum. The changes can be classified under the headings of new expectations, new research and new techniques.

Figure 1. 1 shows how expectations of maintenance have evolved. 

Downtime has always affected the productive capability of physical assets by reducing output, increasing operating costs and interfering with customer service. By the 1960's and 1970's, this was already a major concern in the mining, manufacturing and transport sectors. In manufacturing, the effects of downtime are being aggravated by the worldwide move towards just-in-time systems, where reduced stocks of work-in-progress mean that quite small breakdowns are now much more likely to stop a whole plant. In recent times, the growth of mechanization and automation has meant that reliability and availability have now also become key issues in sectors as diverse as health care, data processing, telecommunications and building management.

Greater automation also means that more and more failures affect our ability to sustain satisfactory quality standards. This applies as much to standards of service as it does to product quality. For instance, equipment failures can affect climate control in buildings and the punctuality of transport networks as much as they can interfere with the consistent achievement of specified tolerances in manufacturing.

More and more failures have serious safety or environmental consequences, at a time when standards in these areas are rising rapidly. In some parts of the world, the point is approaching where organizations either conform to society's safety and environmental expectations, or they cease to operate. This adds an order of magnitude to our dependence on the integrity of our physical assets - one which goes beyond cost and which becomes a simple matter of organizational survival.

At the same time as our dependence on physical assets is growing, so too is their cost - to operate and to own. To secure the maximum return on the investment which they represent, they must be kept working efficiently for as long as we want them to.

Finally, the cost of maintenance itself is still rising, in absolute terms and as a proportion of total expenditure. In some industries, it is now the second highest or even the highest element of operating costs. As a result, in only thirty years it has moved from almost nowhere to the top of the league as a cost control priority.

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

27 steps of the Gearbox Repair and rebuilding

 27 steps of the Gearbox Repair and rebuilding: Step 1 Cleaning exterior of Gearbox and identification. Step 2 Remove all bolts from the gearbox. Step 3 Disassembly for Gearbox preliminary evaluation of the condition and repair required Step 4 Mag inspect Gearbox. Step 5 check all Gears. Step 6 Customer communication of health of the Gearbox. Step 7 Parts to be repaired or, reverse engineered parts where needed required for Gearbox rebuild. Step 8 Failure analysis during complete disassembly and evaluation of the component wear and damage. Step 9 Cleaning all internal components and housing. Step 10 Check all bearings diameters in house. Step 11 Check all shafts Step 12 inspect all Gears. Step 13 Set up check line bore of the gearbox. Step 14 Repair and rebuild Gears back to O.E.M Step 15 Replacing all bearings seals and gaskets Step 16 Repair and rebuild all shafts again to O.E.M Step 17 Realigning all gears shafts and bearings back to O.E.M Step

Thermal growth: how to identify, quantify and deal with its effects on turbomachinery

Thermal growth, as used in the field of machinery alignment, is machine frame expansion resulting from heat generation. The generation of heat, of course, is caused by operational processes and forces. Materials subjected to temperature changes from heat generation will expand by precise amounts defined by their material properties. In turbomachinery, thermal growth results from the temperature differences occurring between the at-rest and running conditions. Generally speaking, the greater the temperature difference, the greater the thermal growth. The magnitude of the growth can be calculated from three variables: ∆ T (temperature difference) C   (coefficient of thermal expansion) L    (distance between shaft centerline and machine supports) When machinery begins to generate heat, the temperature difference between at-rest and running conditions will cause thermal expansion of the machine frame, thereby bringing about the movement of the shaft centerlines. This can produce changes in

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb