Skip to main content

How To Troubleshoot the Effective Maintenance


Knowledge of effective troubleshooting practices can go a long way toward getting equipment back on line quickly. Unfortunately, due to many reasons troubleshooting occupies too much of a technician's time.

You might consider these six key elements to improve your troubleshooting skills:
  • Understand the system
  • Understand the problem and history
  • Eliminate the obvious
  • Develop possible causes and theories
  • Eliminate causes, start with what is easy, or likely
  • Validate and document the solution
Firstly, if you do not understand the system and how it functions, you will be thrashing around in the dark. I found the best time to understand was while the equipment was running and producing product. Time spent studying the process while the equipment was running paid huge benefits when issues arose.

It was always beneficial to listen closely to what the operator saw, heard, noticed, and did, just before the problem occurred. I learned quickly that a good operator was a great asset. They can be a valuable part of the troubleshooting process, especially with chronic problems.

When it comes time to start diagnosing the problem remember to check and eliminate the obvious possibilities first. Check the basics like air, water, power, e-stops, and fuses. I find that troubleshooting is more like peeling the layers of an onion back than digging rabbit holes. The biggest danger is that you would dive too deeply down a particular path (a rabbit hole) and realize it is a dead end. Good troubleshooters will start with the obvious potential causes, eliminate, and then develop deeper possible causes and theories.
Figure 1: Example of a Tree Diagram

I personally like to use a tree diagram (see Figure 1) to develop multiple theories as to what could cause the problem. I then look for ways to eliminate entire branches of the tree. For example if I believe that a vacuum valve on a system may not be functioning, I might find a way to bypass the valve and see if I can manually activate the system. Again, I am looking for clues as to where to dig deeper. One point worth mentioning is that after I have conducted tests to eliminate possible causes, I sometimes need to pick the most likely component and remove it for inspection. The trick is to investigate deeper; remember, do not dive too far too fast.

I also find that certain possibilities are easy to eliminate, yet fairly likely to be causing the issue. I will likely take them out first. I was troubleshooting a check engine light on a car, had four possible causes: vacuum line issue, vacuum control valve issue, EGR valve not switching, and EGR position feedback. I found that I could eliminate the 3 out of 4 possibilities by bypassing the vacuum control valve. If the EGR did not switch, it meant I had a leaky line or bad EGR diaphragm. Moving a vacuum line was far easier (and cheaper) than pulling off or replacing the EGR assembly; so that was my first test. Once I found the problem, a plugged outlet tube, I bypassed the valve by manually forcing the EGR valve to switch, verifying that all components were working.

Lastly, I am a huge fan of checking back with the operator a day after the repair to validate we have resolved the issue. It not only avoids embarrassing repeat calls; even when the repair worked, you will buy good press with the operators.

Read more: http://info.marshallinstitute.com/bid/52715/Effective-Maintenance-Troubleshooting-6-Key-Elements

Comments

Popular posts from this blog

Maintenance 4.0 Implementation Handbook (pdf)

WHAT IS MAINTENANCE 4.0? Industry 4.0 is a name given to the current trend of automation and data exchange in industrial technologies. It includes the Industrial Internet of things (IIoT), wireless sensors, cloud computing, artificial intelligence (AI) and machine learning. Industry 4.0 is commonly referred to as the fourth industrial revolution. Maintenance 4.0 is a machine-assisted digital version of all the things we have been doing for the past forty years as humans to ensure our assets deliver value for our organization. Maintenance 4.0 includes a holistic view of sources of data, ways to connect, ways to collect, ways to analyze and recommended actions to take in order to ensure asset function (reliability) and value (asset management) are digitally assisted. For example, traditional Maintenance 1.0 includes sending highly-trained specialists to collect machinery vibration analysis readings on pumps, motors and gearboxes. Maintenance 4.0 includes a wireless vibration sensor conne

27 steps of the Gearbox Repair and rebuilding

 27 steps of the Gearbox Repair and rebuilding: Step 1 Cleaning exterior of Gearbox and identification. Step 2 Remove all bolts from the gearbox. Step 3 Disassembly for Gearbox preliminary evaluation of the condition and repair required Step 4 Mag inspect Gearbox. Step 5 check all Gears. Step 6 Customer communication of health of the Gearbox. Step 7 Parts to be repaired or, reverse engineered parts where needed required for Gearbox rebuild. Step 8 Failure analysis during complete disassembly and evaluation of the component wear and damage. Step 9 Cleaning all internal components and housing. Step 10 Check all bearings diameters in house. Step 11 Check all shafts Step 12 inspect all Gears. Step 13 Set up check line bore of the gearbox. Step 14 Repair and rebuild Gears back to O.E.M Step 15 Replacing all bearings seals and gaskets Step 16 Repair and rebuild all shafts again to O.E.M Step 17 Realigning all gears shafts and bearings back to O.E.M Step

Thermal growth: how to identify, quantify and deal with its effects on turbomachinery

Thermal growth, as used in the field of machinery alignment, is machine frame expansion resulting from heat generation. The generation of heat, of course, is caused by operational processes and forces. Materials subjected to temperature changes from heat generation will expand by precise amounts defined by their material properties. In turbomachinery, thermal growth results from the temperature differences occurring between the at-rest and running conditions. Generally speaking, the greater the temperature difference, the greater the thermal growth. The magnitude of the growth can be calculated from three variables: ∆ T (temperature difference) C   (coefficient of thermal expansion) L    (distance between shaft centerline and machine supports) When machinery begins to generate heat, the temperature difference between at-rest and running conditions will cause thermal expansion of the machine frame, thereby bringing about the movement of the shaft centerlines. This can produce changes in

John Crane's Type 28 Dry Gas Seals: How Does It Work?

How Does It Work? Highest Pressure Non-Contacting, Dry-Running Gas Seal Type 28 compressor dry-running gas seals have been the industry standard since the early 1980s for gas-handling turbomachinery. Supported by John Crane's patented design features, these seals are non-contacting in operation. During dynamic operation, the mating ring/seat and primary ring/face maintain a sealing gap of approximately 0.0002 in./5 microns, thereby eliminating wear. These seals eliminate seal oil contamination and reduce maintenance costs and downtime. John Crane's highly engineered Type 28 series gas seals incorporate patented spiral-groove technology, which provides the most efficient method for lifting and maintaining separation of seal faces during dynamic operation. Grooves on one side of the seal face direct gas inward toward a non-grooved portion of the face. The gas flowing across the face generates a pressure that maintains a minute gap between the faces, optimizing flui

Technical questions with answers on gas turbines

By NTS. What is a gas turbine? A gas turbine is an engine that converts the energy from a flow of gas into mechanical energy. How does a gas turbine work? Gas turbines work on the Brayton cycle, which involves compressing air, mixing it with fuel, and igniting the mixture to create a high-temperature, high-pressure gas. This gas expands through a turbine, which generates mechanical energy that can be used to power a variety of machines and equipment. What are the different types of gas turbines? There are three main types of gas turbines: aeroderivative , industrial, and heavy-duty. Aeroderivative gas turbines are used in aviation and small-scale power generation. Industrial gas turbines are used in power generation and other industrial applications. Heavy-duty gas turbines are typically used in large power plants. What are the main components of a gas turbine? The main components of a gas turbine include the compressor, combustion chamb